

CALCULATION POLICY

January 2023

Addition

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Can you show me ? \qquad \qquad is \qquad and one more. EYFS			 Children relate the number of objects to the numeral.
\qquad is the whole, \qquad is a part, \qquad is a part. $\begin{aligned} & Z_{Z}=\text { plus } \quad \text { and } \quad \text { plus } \\ & = \end{aligned}$ There are \qquad in total. EYFS/1			(2) $\begin{array}{ll} 2+3=5 & 3+2=5 \\ 5=2+3 & 5=3+2 \end{array}$ Bar model \square

First I partition the \qquad : \qquad plus \qquad is equal to \qquad Then \qquad plus \qquad is equal to ten ... and ten plus \qquad is equal to -. Year 1/2			$\begin{aligned} & 7+3=10 \\ & 10+2=12 \end{aligned}$ $\begin{aligned} & 7+5= \\ & 7+3+2=10+2 \\ & 10+2=12 \end{aligned}$
Year 1/2		$\mid 1 \cdot \cdots+\cdots$	$22+4=26$
First I partition the \qquad into \qquad and \qquad and the \qquad into \qquad and \qquad \qquad plus \qquad is equal to \qquad \ldots (addition of the tens) \qquad plus \qquad is equal to _.. \qquad (addition of the ones) and \qquad plus \qquad is equal to \qquad (addition of the tens and ones) So \qquad plus \qquad is equal to \qquad (summary of the overall calculation)			$34+23=57$

Year 1/2			
I know that __ plus __ is equal to __. (single-digit fact) So \qquad \qquad is equal to \qquad (related two-digit plus single digit fact) I know that __ plus __ is equal to ten so __ plus __ is equal to __. Year 1/2			
```I know that __ plus __ is equal to _- So``` $\qquad$   ```tens plus``` $\qquad$   ```tens is equal to``` $\qquad$   ```tens.``` $\qquad$   ```tens is equal to __ tens and _ ones. \\ Year 2```	$40+30=70 \text { so } 45+30=75$	$45+30=75$	$\begin{aligned} & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \\ & \text { So } 45+30=75 \end{aligned}$



Addition Facts

Adding I	Bonds to 10	Adding 10	Bridging/compensating	YI facts
Adding 2	Adding 0	Doubles	Near doubles	$\square$ facts


+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$


Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
I know that $\qquad$ plus $\qquad$ is equal to $\qquad$ (single-digit numbers) So $\qquad$ tens plus $\qquad$ tens is equal to $\qquad$ tens. (multiple-of-ten numbers) $\qquad$ plus $\qquad$ is equal to one hundred and __.   Year 3			$\begin{array}{rl}  & \ddots \because+{ }^{50}=120 \\ & \ddots \cdot 30 \\ 70+50 & 100 \\ = & 70+30+20 \\ = & 100+20 \\ = & 120 \end{array}$
I know that $\qquad$ plus $\qquad$ is equal to $\qquad$ (single-digit numbers) So $\qquad$ tens plus $\qquad$ tens is equal to $\qquad$ tens. (multiple-of-ten numbers) $\qquad$ plus $\qquad$ is equal to one hundred and $\qquad$   Year 3	$87+30=110+7=117$		$\begin{aligned} 87+30 & =80+7+30 \\ & =110+7 \\ & =117 \end{aligned}$



			$\begin{array}{rrrrrr} £ & 2 & 4 & . & 5 & 5 \\ + & 1 & 7 & . & 8 & 2 \\ \hline £ & 4 & 2 & . & 3 & 7 \\ \hline & 1 & 1 & & & \end{array}$
If the column sum is equal to ten or more, we must regroup.   Years 5 and 6	See Year 3 examples	See Year 3 examples	As in Year 4 but using numbers with more than 4 digits

Addition - Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10,100 , etc Years 3, 4, 5 and 6		$\begin{aligned} & 7+5= \\ & 7+3=10 \\ & 10+2=12 \end{aligned}$	
Compensating - rounding to the nearest multiple 10, 100, etc and adjusting   Years 3, 4, 5 and 6	$35+49=34+50=84$	$\begin{aligned} & 520+299= \\ & 520+300=820 \\ & 820-1=819 \end{aligned}$	$\begin{aligned} & \mathbf{6 9 + 6 9}=138 \\ & 70+70=140 \end{aligned}$

## Subtraction

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
	I have 8 counters. 5 counters are red. How many are blue?	There are 6 children. 2 have their coat on. How many do not have their coat on?	There are 8 flowers. 2 are red and the rest are yellow. How many are yellow? $8-2=6$
First... Then... Now...   e.g. First there were 4 children in the car, then 1 child got out. Now there are 3 children in the car.   Year R/1	Role play 'getting out of a car'.   Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is the part. What is the other part?		If you know that $5+5=10$ Then you also know that $10-5=5$   Move to using numbers within the part whole model.


We partition the in $\qquad$ into $\qquad$ and _First we subtract the $\qquad$ from $\qquad$ to get to 10. Then we subtract the remaining $\qquad$ from 10. We know 10 minus $\qquad$ is equal to $\qquad$   Year 2	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=8 \end{aligned}$ $12-/_{2}^{4} \backslash_{2}$	First there were 12 children on the ride. Then 4 got off. Now there are 8 children on the ride.	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=4 \end{aligned}$
There are more $\qquad$ than $\qquad$   There are fewer $\qquad$ than $\qquad$   The difference between $\qquad$ and $\qquad$ is $\qquad$   Year 2	The difference between 2 and 5 is 3 . The difference between 5 and 2 is 3 .	The difference between 4 and 7 is 3 . The difference between 7 and 4 is 3 .	5 red cars   3 blue cars $5-3=2$
I know that $\qquad$ minus $\qquad$ is equal to $\qquad$ (single-digit fact)   So $\qquad$ minus $\qquad$ is equal to $\qquad$ . (related twodigit minus single digit fact)   I know that ten minus $\qquad$ is equal to $\qquad$ so $\qquad$ minus $\qquad$ is equal to $\qquad$   Year 2		$\begin{aligned} & 9-3=6 \\ & 99-3=96 \end{aligned}$	
I know that $\qquad$ minus $\qquad$ is equal to $\qquad$ So $\qquad$ tens minus $\qquad$ tens is equal to $\qquad$ tens.   Year 2	$70-30=40 \text { so } 75-30=45$	$75-30=45$	$5-3=2$   5 tens -3 tens $=2$ tens $50-30=20$


First I subtract the tens, then I subtract the ones.   Year 2	$\begin{aligned} & 45-23= \\ & 45-20=25 \\ & 25-3=22 \end{aligned}$	$67-34=33$	$45-23=22$
First I subtract the tens, then I subtract the ones.   Year 2		Real story	$63-17=46$
I know that $\qquad$ minus $\qquad$ is equal to $\qquad$ (bridging ten)   So $\qquad$ tens minus $\qquad$ tens is equal to $\qquad$ tens. (bridging ten tens)   One hundred and $\qquad$ minus $\qquad$ is equal to $\qquad$ Year 3	See Year 2 (bridging)	$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	$\begin{aligned} & 120 \cdot-30=90 \\ & \quad 100 \\ & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$
I know that $\qquad$ minus $\qquad$ is equal to $\qquad$ (bridging ten)   So $\qquad$ tens minus $\qquad$ tens is equal to $\qquad$ tens. (bridging ten tens)   One hundred and $\qquad$ minus $\qquad$ is equal to $\qquad$ Year 3	$\longrightarrow$ $126-70=56$	-70   $\int_{56}$	$\begin{aligned} & \quad \\ & 126-70=56 \\ & =120-70+6 \\ & =50+6 \\ & =56 \end{aligned}$


We partition the $\qquad$ into $\qquad$ and _. First we subtract the $\qquad$ from $\qquad$ to get to a multiple of 10 . Then we subtract the remaining $\qquad$ fro rom the multiple of 10 . We know 10 minus $\qquad$ is equal to $\qquad$ so $\qquad$ minus $\qquad$ is equal to $\qquad$   Year 3		$544-16$	Count back to multiples of 10/100
We partition the $\qquad$ into $\qquad$ and $\qquad$   First we add the $\qquad$ to $\qquad$ to get to 100 . Then we add the remaining $\qquad$ to 100. We know 100 plus $\qquad$ is equal to $\qquad$   Year 3		$123-97=26$	Count on to multiples of 10/100



If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left.   Year 4	See Year 3 examples	See Year 3 examples	$\begin{array}{r} 6^{5} 5^{4} 3^{1} 8 \\ -\quad 2,789 \\ \hline 3,749 \\ \hline \end{array}$ $\begin{array}{rrrrr} £ & 2 & 9^{8} \cdot 5^{14} 0 \\ -£ & 1 & 8 & \cdot & 9 \\ \hline £ & 1 & 0 & 4 & 6 \\ \hline \end{array}$
If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left.   Years 5 and 6	See Year 3 examples	See Year 3 examples	As in Year 4 but using numbers with more than 4 digits

Subtraction - Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10,100 , etc Years 3, 4, 5 and 6		$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	$\begin{gathered} 120 \cdot-30=90 \\ \quad 100 \\ 120-30= \\ 120-20=100 \\ 100-10=90 \end{gathered}$
Compensating - rounding to the nearest multiple 10, 100, etc and adjusting   Years 3, 4, 5 and 6	$152-29$		$\begin{aligned} & 152-30=122 \\ & 122+1=123 \end{aligned}$

Multiplication

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$   Ten, twenty, thirty, ...   One five, two fives, three fives, ...   Year R/1		$\begin{array}{l\|l\|l\|l\|l\|l\|l\|l\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline & \mid \\ \hline \end{array}$	10, 20, 30, ...
There are $\qquad$ coins.   Each coin has a value of $\qquad$ p.   This is $\qquad$ p.   Year 1	Representing each group by one object		Five $2 p$ coins = 10p
There are $\qquad$ in each group.   There are $\qquad$ groups.   There are $\qquad$ in a group and $\qquad$ groups.   Year 2		5 5 5	$\begin{aligned} & 2+2+2+2=8 \\ & 2 \times 4=8 \\ & 5+5+5=15 \\ & 5 \times 3=15 \end{aligned}$
Factor times factor is equal to the product. The product is equal to factor times factor.   Year 2	Unitising equal groups - representing each group by one object		$\begin{aligned} & 2 \times 3=6 \\ & 6=2 \times 3 \end{aligned}$
$\qquad$ _ times $\qquad$ can represent $\qquad$ in a group and __groups.   It can also represent $\qquad$ groups of _. $\qquad$   Multiplication is commutative.   Year 2			$2 \times 5=5 \times 2$


$\qquad$ $\qquad$   is equal to plus $\qquad$ _, so $\qquad$ times $\qquad$ is equal to $\qquad$ times $\qquad$ plus $\qquad$ times $\qquad$ _. $\qquad$ is equal to $\qquad$ minus $\qquad$ , so $\qquad$ times $\qquad$ is equal to $\qquad$ times $\qquad$ minus $\qquad$ times $\qquad$ Multiplication is distributive.   (NCETM Year 4 unit 2.10)   Year 3							$4$		5 $5 \times 8$   4 $4 \times 8$	$\begin{aligned} & =4+1 \\ & =4 \times 8+1 \times 8 \\ & =32+8 \\ & =40 \\ & =5-1 \\ & =5 \times 8-1 \times 8 \\ & =40-8 \\ & =32 \end{aligned}$
$\qquad$   is   equal to $\qquad$ pl $\qquad$ $\qquad$ $\qquad$ times $\qquad$ is equal to $\qquad$ times $\qquad$ plus $\qquad$ times $\qquad$ _. $\qquad$ is equal to $\qquad$ minus $\qquad$ , so $\qquad$ times $\qquad$ is equal to $\qquad$ times $\qquad$ minus $\qquad$ times $\qquad$   Multiplication is distributive.   (NCETM Year 4 unit 2.10)   Year 3			3		$30$			3 9	$3 \times 13$	$\begin{aligned} & =3 \times 10+3 \times 3 \\ & =30+9 \\ & =39 \end{aligned}$
To multiply a whole number by 10 , place a zero after the final digit of that number.   Year 4	  (10) (10) (10) (10) (10) (10) (10) (10) (10)   $\rightarrow$ (1) (1) 1 (1) 1 (1) (1) 1 (1) 1 (1) 1			100s	10s	1s      0   0   es   en   is   2   0	$\downarrow \times$		$6 \times 10$ $12 \times 10$	$=60$ $\text { = } 120$







Multiplication - Key mental strategies for Key Stage 2



Products in the 10 times table can be used to find products in the 9 times table.   (NCETM Year 3 unit 2.8)   Year 4 onwards					$9 \times 4=10 \times 4-1 \times 4$
Products in the 10 times table can be used to find products in the 11 times table and 12 times table.   Year 4 onwards		3	30	6	$\begin{aligned} 12 \times 3 & =10 \times 3+2 \times 3 \\ & =30+6 \\ & =36 \end{aligned}$

Division

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$   Ten, twenty, thirty, ...   One five, two fives, three fives, ...   Year R/1		00	6 biscuits shared between 2 children gives 3 biscuits each.
The $\qquad$ costs $\qquad$ p. Each coin has a value of p. $\qquad$ So I need $\qquad$ coins.   Year 1			Five $2 p$ coins $=10 p$
$\qquad$ is divided into groups of $\qquad$   There are $\qquad$ groups.   We can skip count using the divisor to find the quotient.   Year 2			$\begin{aligned} & 5+5+5=15 \\ & 15 \div 5=3 \end{aligned}$
$\qquad$ divided between $\qquad$ is equal to $\qquad$ each.   We can skip count using the divisor to find the quotient.   Year 2			One 5 is 1 each. That's 5.   Two 5 s is 2 each. That's 10. $10 \div 5=2$   Dividend divided by the divisor equals the quotient.





If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens.   Year 4			212 $4 \lcm{848}$   $14 \quad 1$ $5 \lcm{7{ }^{2} 0 \quad 5}$   $1 \quad 5 \quad 3$ $4 \longdiv { 6 { } ^ { 2 } 1 ^ { 1 } 2 }$

If there is a multiplicative change to the
dividend factor and a corresponding change
same.
If I multiply the dividend by $\quad$, I must
multiply the divisor by _ for the quotient to
remain the same.

Any two-, three- or four-digit dividend can be divided by a two-digit divisor using skipcounting in multiples of the divisor, or by short division.   Year 6	Partitioning	Short division   $\begin{array}{rrr}0 & 1 & 4 \\ 31 \lcm{4}{ }^{4} 3 & { }^{12} 4\end{array}$	
Where there is a remainder, the result can be expressed as a whole-number quotient with a whole-number remainder, a wholenumber quotient with a proper-fraction remainder, or as a decimal-fraction quotient.   Year 6	$\begin{array}{rrrr}  & 2 & 3 & r 9 \\ \hline 3 & 5 & 4 & \end{array}$	$1 5 \longdiv { 3 } \begin{array} { l } { 2 } \\ { 3 } \end{array}$	$1 5 \longdiv { 3 } \begin{array} { r } { 2 \quad 3 . 6 } \\ { \hline } \end{array}$

